Quasi-subtractive varieties
نویسندگان
چکیده
Varieties like groups, rings, or Boolean algebras have the property that, in any of their members, the lattice of congruences is isomorphic to a lattice of more manageable objects: e.g. normal subgroups of groups, two-sided ideals of rings, lters (or ideals) of Boolean algebras. Abstract algebraic logic can explain these phenomena at a rather satisfactory level of generality: in every member A of a -regular variety V, in fact, the lattice of congruences of A is isomorphic to the lattice of deductive lters on A of the -assertional logic of V. Moreover, if V has a constant 1 in its type and is 1-subtractive, the deductive lters on A 2 V of the 1assertional logic of V coincide with the V-ideals ofA in the sense of Gumm and Ursini, for which we have a manageable concept of ideal generation. However, there are isomorphism theorems e.g. in the theories of residuated lattices, pseudointerior algebras and quasi-MV algebras that cannot be subsumed by these general results. The aim of the present paper is to appropriately generalise the concepts of subtractivity and -regularity in such a way as to shed some light on the deep reason behind such theorems, as well as (possibly) many more. The tools and concepts we develop hereby provide a common umbrella for the algebraic investigation of several families of logics, including substructural logics, modal logics, quantum logics, logics of constructive mathematics.
منابع مشابه
Semi-linear Varieties of Lattice-Ordered Algebras
We consider varieties of pointed lattice-ordered algebras satisfying a restricted distributivity condition and admitting a very weak implication. Examples of these varieties are ubiquitous in algebraic logic: integral or distributive residuated lattices; their {·}-free subreducts; their expansions (hence, in particular, Boolean algebras with operators and modal algebras); and varieties arising ...
متن کاملClosedness Properties of Internal Relations I: a Unified Approach to Mal’tsev, Unital and Subtractive Categories
We study closedness properties of internal relations in finitely complete categories, which leads to developing a unified approach to: Mal’tsev categories, in the sense of A.Carboni, J. Lambek and M.C.Pedicchio, that generalize Mal’tsev varieties of universal algebras; unital categories, in the sense of D.Bourn, that generalize pointed Jónsson-Tarski varieties; and subtractive categories, intro...
متن کاملClosedness Properties of Internal Relations Ii: Bourn Localization
We say that a class D of categories is the Bourn localization of a class C of categories, and we write D = Loc(C), if D is the class of all (finitely complete) categories D such that for each object A in D, Pt(D ↓ A) ∈ C, where Pt(D ↓ A) denotes the category of all pointed objects in the comma-category (D ↓ A). As D.Bourn showed, if we take D to be the class of Mal’tsev categories in the sense ...
متن کاملm at h . A G ] 2 6 M ay 1 99 8 Quasi - Projective Reduction of Toric Varieties
We define a quasi–projective reduction of a complex algebraic variety X to be a regular map from X to a quasi–projective variety that is universal with respect to regular maps from X to quasi–projective varieties. A toric quasi–projective reduction is the analogous notion in the category of toric varieties. For a given toric variety X we first construct a toric quasi–projective reduction. Then ...
متن کاملIntroduction to the Theory of Quasi-log Varieties
This paper is a gentle introduction to the theory of quasi-log varieties by Ambro. We explain the fundamental theorems for the log minimal model program for log canonical pairs. More precisely, we give a proof of the base point free theorem for log canonical pairs in the framework of the theory of quasi-log varieties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 76 شماره
صفحات -
تاریخ انتشار 2011